
TABLE I

IMIDAZOLYL DERIVATIVES

	-		N 00	Yield,	Solvent of	El-6
No.	\mathbb{R}_1	R_2	Mp. °C	%	recrystn	Formula ^c
1	CPh_3	СНО	197 - 199	80	EtOH	$\mathrm{C}_{23}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}$
2	CPh_3	$CHOHCH_2NO_2$	182 - 183	88	MeOH	$C_{24}H_{21}N_{3}O_{3}$
3	CPh_3	$CHOHCH(CH_3)NO_2$	195 - 197	68	EtOH	${ m C}_{25}{ m H}_{23}{ m N}_{3}{ m O}_{3}$
6	CPh_3	$CH_{2}OH$	234 - 236	80	Dioxane	$C_{23}H_{20}N_2O$
7	CPh_3	c-CHOCH ₂	194 - 196	100	EtOH	$C_{24}H_{20}N_{2}O$
4 (salt)	Н	$CHOHCH_2NH_2 \cdot 2HCl^{\alpha}$	214 - 216	65	$MeOH-Et_2O$	$C_5H_{11}Cl_2N_3O$
. ,	Н	$CHOHCH_2NH_2$ dipicrate ^a	224 - 226		$H_{2}O$	$C_{17}H_{17}N_9O_{16}$
8 (salt)	н	$CHOHCH_2NHCH_3 \cdot fumarate^d$	185–187 dec	35	MeOH	$C_{10}H_{15}N_3O_5$
. ,	н	CHOHCH ₂ NHCH ₃ · dipicrate	209–211 dec		H_2O	$C_{18}H_{17}N_9O_{15}$
9 (salt)	Н	CHOHCH ₂ NHCH(CH ₃) ₂ · difumarate	$162 - 164 \deg$	65	MeOH	$C_{16}H_{23}N_{3}O_{9}$
. ,	Н	CHOHCH ₂ NHCH(CH ₃) ₂ · dipicrate	$190-192 \operatorname{dec}$		$H_{2}O$	$C_{20}H_{21}N_9O_{15}$
5 (salt)	Н	CHOHCH(CH ₃)NH ₂ ·2HCl	216–218 dec	25	$MeOH-Et_2O$	$C_6H_{13}Cl_2N_3O$
	н	$CHOHCH(CH_3)NH_2 \cdot dipicrate$	204–206 dec		$H_{2}O$	$C_{18}H_{17}N_9O_{15}$
10 (salt)	н	CHOHCH ₂ N(CH ₃) ₂ ·2HCl ^b	173 - 175	55	$MeOH-Et_2O$	$C_7H_{15}Cl_2N_3O$
	Н	$CHOHCH_2N(CH_3)_2$ ·dipicrate	237–239 dec		H_2O	$C_{19}H_{19}N_9O_{15}$
		. ,				

4-(N-Triphenylmethyl)imidazolylmethanol (6).—Compd 1 (2 g, 0.006 mole) was added in portions to a stirred slurry of 0.3 g of LAH in 50 ml of THF. The mixt was refluxed for 2 hr and then allowed to cool, 5 ml of H₂O was added, and the mixt was worked up as usual; yield, 1.6 g (see Table I).

4-(N-Triphenylmethyl)imidazolyl]oxirane (7).—The procedures of Corey and Chaykowsky⁵ and Duncan, et al.,⁶ were used. To 3.36 g (0.07 mole) of NaH (50% in paraffin oil) was added 30 ml of DMSO under N₂. The mixt was stirred at 65-70° for 45-60 min and, after cooling, 30 ml of THF was added. The soln was chilled to 0° to -10° and a soln of trimethylsulfonium iodide (14.3 g, 0.07 mole) in 50 ml of DMSO was added dropwise. The mixt was stirred for another 5 min, and 12 g (0.035 mole) of the solid aldehyde 1 was added in portions. After 10 min the cooling bath was removed and stirring contd for 1 hr at 29°. The slurry was poured into a mixt of 500 ml of cold H₂O and 250 ml of petr ether (bp 30-60°), and allowed to stand at 4° overnight. The solid oxirane was filtered, washed (H₂O, petr ether), and airdried. The yield was practically quant. The product was sufficiently pure for use in the following steps.

N-Substituted β -Hydroxyhistamines.—Compd 7 (0.01 mole) was refluxed in each case for 8 hr with a mixt of 5–10 times the necessary molar amt of primary or secondary amine and enough EtOH or dioxane to keep the oxirane in soln.⁶ After cooling, the reaction product was extd several times with Et₂O, and the ext was washed (H₂O) and counterextd with 1 N HCl (25 + 10 ml). The aq layer was heated on a steam bath for 15 min, the pptd Ph₃COH was filtered off, and H₂O was evapd *in vacuo*. The residual oil was dissolved in a small amt of abs EtOH. One part was converted to the respective picrate in EtOH.

From another portion, the dihydrochlorides were obtd on cooling, sometimes after addn of abs Et₂O. If they were hygroscopic, their soln in EtOH was made slightly alk (pH 8) with KOH in EtOH, KCl was filtered off, and a soln of excess fumaric acid in boiling MeOH was added. Recrystn from MeOH-Et₂O afforded the corresponding difumarates.

Pharmacological Methods.—Male rabbits (1.1 kg) were used; their isolated heart was suspended in Chenoweth's soln. Isuprel was used at $3 \times 10^{-7} M$, the drugs were used at 1×10^{-3} to $1 \times 10^{-6} M$. The reported changes refer to $1 \times 10^{-6} M$ drug solns.

Potential Inhibitors of Protein Biosynthesis

A. P. GROLLMAN, S. ROSEN,

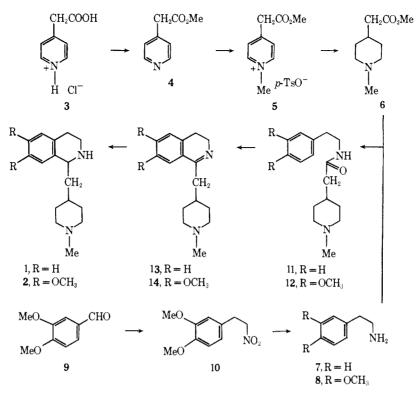
Department of Pharmacology, Albert Einstein College of Medicine, New York, New York 10461

and G. Hite*

The Laboratory of Medicinal Chemistry, Department of Chemistry, College of Pharmaceutical Sciences in the City of New York, Columbia University, New York, New York 10023

Received March 18, 1971

A structural basis for the inhibition of protein synthesis by emetine and cycloheximide was recently proposed, based on an analogy between the ipecac alkaloids and glutarimide antibiotics.^{1,2} Based on this hypothesis, the biological activity of tubulosine was correctly predicted.³ Compounds 1 and 2 described in this communication embody some but not all topochemical features of the proposed model.


Following esterification of 3, the Me ester 4 was quaternized with *p*-TsOMe to give 5. Reduction of 5 in the presence of Pt gave 6. Homoveratrylamine (8) was prepared by condensation of 9 with MeNO₂ followed by LAH reduction of 10.⁴ Heating 7 or 8 with 6 afforded the amides (11 or 12). These underwent POCl₃-induced cyclization to 13 and 14 which afforded

(4) I. Kikkawa, Yakugaku Zasshi, 78, 1006 (1958); Chem. Abstr., 53, 3260 (1959).

⁽¹⁾ A. P. Grollman, Proc. Nat. Acad. Sci. U. S., 56, 1867 (1966).

⁽²⁾ A. P. Grollman, in "Drug Design," Vol. 2, E. J. Ariens, Ed., Academic Press, New York, N. Y.

⁽³⁾ A. P. Grollman, Science, 157, 84 (1967).

1 and 2 by reduction in the presence of Pt. The symmetry of the aromatic proton absorption in the nmr spectrum of 2 supports the structural assignment.

Compounds 1 and 2 were found to have minimal effects on protein synthesis when tested at 10^{-3} M in crude lysates prepared from rabbit reticulocytes.⁵ By comparison, emetine inhibits protein synthesis by 50% in these preparations at 3×10^{-6} M. It would appear that the topochemical requirements in the area of the tertiary N and adjacent C atoms of the proposed model^{1,2} cannot be ignored in the synthesis of further compounds to test the validity of this proposal.

Experimental Section⁶

N-Phenethyl- α -[4-(1-methylpiperidyl)]acetamide (11).—Dry HCl was passed into a soln (-60°) of 87 g of **3** in 400 ml of dry MeOH for 12 hr. Solv and HCl were removed *in vacuo* at room temp. The residue was mixed with 400 ml of H₂O and 100 ml of CHCl₃ and treated with 60 g of Na₂CO₃ at 4°. The mixt was extd with 2 more 100-ml portions of CHCl₃ The exts were combined, dried (Na₂SO₄), filtd, and evapd to give, after distn, 53 g (70%) of **4**: bp 113-115° (10 mm) [lit.⁹ bp 114.5° (10 mm)]. This was mixed with 93 g of *p*-TsOMe and heated (90°) for 6 hr. The cooled (20°) mixt was washed with Et₂O. The Et₂O washes were evapd, and the residual oil was reheated. In this way, 90 g (80%) of Et₂O-insol quaternary salt (**5**) was obtd. Redn at **4.2 kg**/cm² and 25° in the presence of 1.5 g of PtO₂ and 250 ml of EtOH gave, after filtn and removal of solv *in vacuuo* at room temp, a residue which was mixed with 400 ml of H₂O and 100 ml of CHCl₃ and treated with 60 g of Na₂CO₃ at 4°. The mixt was extd with 2 more 100-ml portions of CHCl₃. The combined exts were dried (Na₂SO₄), filtd, and evapd to give, after distn, 38 g (80%) of 6: ir (film) 1735 cm⁻¹ (C=O, ester). To 17 g of 6 was added 12.2 g of freshly dist 7. The mixt was heated (190°) in an oil bath for 16 hr by which time the 1735 cm⁻¹ band (film) appeared as a very weak shoulder on the principal absorption band at 1635 cm⁻¹ (C=O, amide). On cooling, the solid recrystd from Et₂O to give 18.2 g (70%) of 11: mp 99-100°; nmr (CD-Cl₃) & 7.23 (s, 5 H, CdH₃), 6.02 (broad m, 1 H, NH), 3.53 (4 line pattern, 2 H, CH₂N), and 2.17–0.8 ppm (m, 9 H, piperidine ring protons). Anal. (Cl₁₆H₂₄N₂O) C, H, N.

N-(3,4-Dimethoxyphenethyl)- α -[4-(1-methylpiperidyl)]acetamide (12).—To 17 g of 6 was added 18.3 g of 8 prepared as described by Kikkawa.⁴ Treatment and work-up as described in the prepn of 11 afforded 19.1 g (60%) of 12 from Me₂CO-petr ether (30-60°): mp 102-103°; ir (CHCl₃) 1660 cm⁻¹ (C=O, amide); nmr (CDCl₃) δ 6.76, 6.73 (unsymm 2 line pattern, 3 H, C₆H₃), 5.90 (broad m, 1 H, NH), 3.86 (s, 6 H, 2CH₃O), 3.53 (4 line pattern, 2 H, CH₂N), 3.00-2.50 (m, 4 H, CH₂Ph and CH₂CO), 2.23 (s, 3 H, CH₃N), and 2.17-0.9 ppm (m, 9 H, piperidine ring protons). Anal. (C₁₅H₂₅N₂O₃) C, H, N.

1-[(1-Methyl-4-piperidyl)methyl]-1,2,3,4-tetrahydroisoquinoline (1).—To 13 g of 11 in 100 ml of C_6H_6 was added 20 ml of POCl₃ and 5 g of P_2O_5 in 50 ml of C_6H_6 . The mixt was allowed to reflux for 4 hr and was then decanted. The gummy residue dissolved in 100 ml of H₂O. The soln was extd with Et₂O, alkalized with solid NaOH, and extd with CHCl₃. The ext was dried (Na₂SO₄), treated with C, filtd, and evapd to give 9 g of oil (13) [ir (film) 1635 (C=O, amide) absent, 1625 cm⁻¹ (C=N)]. Redn of this oil at 28° and 2.8 kg/cm² in the presence of 0.5 g of PtO₂ in 50 ml of MeOH gave, after filtn and evapn of solv *in* vacuo, an oil (1) [ir (film) 3260 (NH), 1625 cm⁻¹ (C=N) absent]. This was dissolved in Et₂O and treated with dry HCI to give 8 g (50%) of salt (1·2HCl) after recrystn from MeOH-Me₂CO: mp 246-248°; nmr (D₂O) δ 7.35 (s, 4 H, C₆H₄), 4.0– 2.5 (m, 12 H, PhCH₂CH₂, PhCH, CH₂NCH₂, NCH₃) and 2.5– 1.0 ppm (m, 7 H, CH₂CH(CH₂)CH₂). Anal. (C₁₆H₂₆Cl₂N₂) C, H, N.

1-[(1'-Methyl-4'-piperidyl)methyl]-6,7-dimethoxy-1,2,3,4tetrahydroisoquinoline (2).—Treatment of 16 g of 12 as in the prepn of 13 gave 10 g of oil (14) [ir (film) 1660 (C=O, amide) absent, 1620 (C=N) and 1606 cm⁻¹ (C=C, Ph)]. Redn as in the prepn of 1 afforded an oil (2) [ir (film) 3325 (NH), 1620 (C=N) absent, 1606 cm⁻¹ (C=C, Ph)] and subsequently, a gum

⁽⁵⁾ These assays were performed by procedures described by C. R. Maxwell and M. Rabinovitz, *Biochem. Biophys. Res. Commun.*, **35**, 79 (1969).

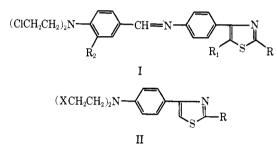
⁽⁶⁾ Melting points were determined in a Thomas-Hoover Uni-Melt capillary mp apparatus and are uncor. Where anal. are indicated by symbols of the elements, determinations by Weller and Strauss, Oxford, England, were within $\pm 0.4\%$ of the theor vals. Perkin-Elmer Model 421 and Varian A60-A spectrometers were used to determine ir and nmr spectra. Assignments of ir⁷ and nmr⁸ bands, believed accurate to within ± 5 cm⁻¹ and ± 1 Hz, resp, were made by analogy with reported vals.

<sup>Hz, resp. were made by analogy with reported vals.
(7) L. J. Bellamy, "The Infrared Spectra of Complex Molecules," Wiley,</sup> New York, N. Y., 1964.

⁽⁸⁾ N. S. Bacca, L. F. Johnson, and J. N. Shoollery, "NMR Spectra Catalog," Vol. 1, Varian Associates Analytical Instruments Division, Palo Alto, Calif., 1962; N. S. Bacca, D. P. Hollis, L. F. Johnson, and E. A. Pier, *ibid.*, Vol. 2, 1963.

⁽⁹⁾ A. R. Katritzky, J. Chem. Soc., 2586 (1955).

upon attempted recrystn of the salt from MeOH. The gum afforded 8.8 g (40%) of 2.2HCl.2MeOH as cryst from CHCl₃-Et₂O; mp 183-185°; nmr (D₂O) δ 6.85 (symm 6 line m, 2 H, C₆H₂), 4.0-2.5 (m, 18 H, PhCH2CH2, PhCH, CH2NCH2, NCH3, 2CH₃O), and 2.5-1.3 ppm (m, 7 H, CH₂CH(CH₂)CH₂). Anal. $(C_{20}H_{38}Cl_2N_2O_4)C, H, N.$


Potential Anticancer Agents. Nitrogen Mustards of Aminophenylthiazoles

J. D. Modi,¹ S. S. Sabnis, and C. V. Deliwala*

Department of Chemotherapy, Haffkine Institute, Bombay 12, India

Received March 5, 1971

We have already reported the synthesis of a variety of Schiff bases (I) from substituted benzaldehyde Nmustards and 4-(*p*-aminophenyl)thiazoles^{2,3} many of which have shown interesting activity against experimental tumor systems.

With $R = CH_2OPh$, $R_1 = H$, and $R_2 = OCH_3$, the Schiff base I was active against Dunning leukemia (solid) (6/6 cures at 11 mg/kg per day), L 1210 lymphoid leukemia (T/C = 146% at 15 mg/kg per day), and Walker 256 intramuscular (T/C = 4%) at 33 mg/kg per day).³ With $R = CH_2Ph$, $R_1 = CH_3$, and $R_2 = OCH_3$, I had good activity against L 1210 lymphoid leukemia and Walker carcinosarcoma 256 (im).³ The most active in this series (I) against L 1210 lymphoid leukemia (2 out of 6 cures at 25 mg/kg per day and T/C = 129% at 3 mg/kg per day) had R = R₁ = CH_3 and $R_2 = OCH_3$.

The structure-activity study of these compounds having shown the importance of aminophenylthiazoles for the anticancer activity, we decided to synthesize a series of N-mustards (II, X = Cl) from these active aminophenylthiazoles.

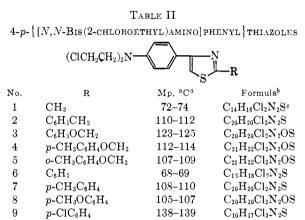

Chemistry.— $4-\{p-[N,N-bis(2-hydroxyethyl)amino]$ phenyl-2-substituted thiazoles (II, X = OH) were prepared by suspending the requisite aminophenylthiazole in aq AcOH and treating with ethylene oxide (yields 45-55%). But we could not isolate the desired product when the substituent in position 2 of the thiazole was Ph. Accordingly, another method was tried wherein a suspension of ω -chloro-*p*-aminoacetophenone in aq AcOH was treated with $(CH_2)_2O$ to furnish the corresponding bis(2-hydroxyethyl) compd in 55% yield which on condensation with the appropriate thioamide in dry EtOH afforded all the bis(2-hydroxyethyl)thiazoles (II, X = OH) as cryst solids (Table I).

TABLE I $4-\left\{p-[N,N-Bis(2-hydroxyethyl)amino] phenyl\right\}$ thiazoles

$(OHCH_2CH_2)_2N$									
		$\mathbf{Yield}, \mathbf{a}, \mathbf{b}$	Mp, °C						
No.	R	%	(uncor)	Formula ^c					
1	CH_3	55	132 - 134	$C_{14}H_{18}N_2O_2S^d$					
2	$C_6H_5CH_2$	48^{-}	127 - 128	$C_{20}H_{22}N_2O_2S$					
3	$C_6H_5OCH_2$	57	138 - 139	$C_{20}H_{22}N_2O_3S$					
4	p-CH ₃ C ₆ H ₄ OCH ₂	53	128 - 129	$C_{21}H_{24}N_2O_3S$					
5	o-CH ₃ C ₆ H ₄ OCH ₂	52	158 - 160	$\mathrm{C_{21}H_{24}N_2O_3S}$					
6	C_6H_5	50	85-87	$C_{19}H_{20}N_2O_2S$					
7	p-CH ₃ C ₆ H ₄	52	129 - 130	$C_{20}H_{22}N_2O_2S^{d}$					
8	p-CH ₃ OC ₆ H ₄	50	120 - 122	${ m C}_{20}{ m H}_{22}{ m N}_2{ m O}_3{ m S}$					
9	p-ClC ₆ H ₄	55	151 - 153	$C_{19}H_{19}ClN_2O_2S$					
	·								

^a The yields reported are the results of single experiment and are based on ω -chloro-4-[N,N-bis(2-hydroxyethyl)amino]acetophenone. ^b Recrystd from EtOH-H₂O. ^c All compds were anal. for N, S and were within 0.4% of theor values. d Anal. C, H.

The identity of compds prepared by both the methods was established by mmp and ir spectra. The corresponding N-mustards (II, X = Cl) were obtained by the use of POCl₃⁴ in 30–35% yields (Table II).

^a Recrystd from EtOH-H₂O except 6 which was recrystd from hexane. ^b All compounds were anal. for N and S and were within 0.4% of theor values. • Anal. C, H.

Biological Activity.—Four representative compds were screened by C.C.N.S.C. and their data are summarized in Table III. All these showed a low order of toxicity compared to our earlier Schiff bases from aminophenylthiazoles. Only 1 exhibited significant activity against Dunning leukemia (solid) and also showed high tumor inhibition in Walker carcinosarcoma 256 (im).

Experimental Section^{5,6}

2-Methyl-4-{p-[N,N-bis(2-hydroxyethyl)amino]phenyl}thiazole.-Ethylene oxide (20 g) was bubbled in a suspension of 2-methyl-4-(p-aminophenyl)thiazole (1.9 g, 0.01 mole) in AcOH (50 ml of 4N) at 0°. The mixt was stirred in ice bath for 7 hr and then left at ca. 10° for 4 days. It was neutralized (Na- HCO_3) to pH 7 and cooled (ice). The granular solid was filtered off, washed (H₂O), and recrystd (EtOH-H₂O).

 $\textbf{2-Phenyl-4-} \left\{ \textit{p-[N,N-bis(2-hydroxyethyl)amino]phenyl} \right\}$ thiazole. $-\omega$ - Chloro - 4 - [N, N - bis(2 - hydroxyethyl) amino] acetophenone was obtained by the action of $(CH_2)_2O$ on ω -chlorop-aminoacetophenone in 4 N AcOH as described above. It was

(6) Melting points are capillary melting points and are uncor.

⁽¹⁾ Government of India Research Scholar.

S. S. Sabnis, Indian J. Chem., 5, 619 (1967).
 J. D. Modi, S. S. Sabnis, and C. V. Deliwala, J. Med. Chem., 13, 935 (1970).

⁽⁴⁾ W. C. J. Ross, J. Chem. Soc., 183 (1949).

⁽⁵⁾ Anal. results obtained were within $\pm 0.4\%$ of theor values.